G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.
نویسندگان
چکیده
A new formulation method was developed for preparing poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Lyophilized rhG-CSF powder and PLGA polymer were directly co-dissolved in a single organic phase, and the resulting solution was dispersed into an aqueous solution. PLGA nanoparticles encapsulating rhG-CSF were produced by a spontaneous emulsion/solvent diffusion method. In this manner, rhG-CSF was molecularly dissolved in the polymer phase. Release profile of rhG-CSF from PLGA nanoparticles was compared with those from two kinds of PLGA microparticles which were separately prepared by either single oil-in-water (O/W) or double water-in-oil-in-water (W/O/W) emulsion technique. The sizes of rhG-CSF loaded nanoparticles, O/W microparticles, and W/O/W microparticles were about 257 nm, 4.7 microm, and 4.3 microm, respectively. For rhG-CSF nanoparticles, about 90% of encapsulated rhG-CSF was released out in a sustained manner from PLGA nanoparticles over a 1 week period, but for rhG-CSF microparticles, only about 20% of rhG-CSF could be released out during the same period. Reversed phase and size exclusion chromatograms revealed that the structural integrity of released rhG-CSF from nanoparticles was nearly intact, compared to that of native rhG-CSF.
منابع مشابه
Fabrication and in vitro evaluation of Ketotifen Fumarate-loaded PLGA nanoparticles as a sustained delivery system
Abstract Ketotifen fumarate is a non-bronchodilator anti-asthmatic drug which inhibits the effects of certain endogenous substances known to be inflammatory mediators, and thereby exerts antiallergic activity. The present study describes the formulation of a sustained release nanoparticle (NP) drug delivery system containing ketotifen, using poly (D,L lactide-co-glycolide acid) (PLGA). Biodegra...
متن کاملFabrication and in vitro evaluation of Ketotifen Fumarate-loaded PLGA nanoparticles as a sustained delivery system
Abstract Ketotifen fumarate is a non-bronchodilator anti-asthmatic drug which inhibits the effects of certain endogenous substances known to be inflammatory mediators, and thereby exerts antiallergic activity. The present study describes the formulation of a sustained release nanoparticle (NP) drug delivery system containing ketotifen, using poly (D,L lactide-co-glycolide acid) (PLGA). Biodegra...
متن کاملBiodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro/Nanoparticles for Sustained Release of Protein Drugs - A Review
Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) and PLGA-based polymeric nanoparticles are widely used for sustained release of protein and peptide drugs. These formulations are usually prepared by water/oil/water (W/O/W) and solid/oil/water (S/O/W) double emulsion solvent evaporation method. Other methods of preparation are nanoprecipitation, emulsion solvent diffusion and salting-out. Th...
متن کاملImproved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method
BACKGROUND Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. METHODS Different methods, such as single and double solvent evaporation emulsion, ion pair...
متن کاملPreparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of pharmaceutics
دوره 311 1-2 شماره
صفحات -
تاریخ انتشار 2006